--- title: "Introduction to hrcomprisk" author: "Ng D, Antiporta DA, Matheson M, Munoz A" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Introduction to hrcomprisk} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( echo = TRUE, collapse = TRUE, comment = "#>", fig.path = "man/figures/README-", out.width = "100%", fig.width = 10, fig.height = 8 ) ``` This package aims to estimate Nonparametric Cumulative-Incidence Based Estimation of the Ratios of Sub-Hazard Ratios to Cause-Specific Hazard Ratios. ## Installation You can install the latest version of `hrcomprisk` in CRAN or the development version from [Github](https://github.com/AntiportaD/hrcomprisk): ``` r # Install hrcomprisk from CRAN install.packages("hrcomprisk") # Or the development version from GitHub: # install.packages("devtools") devtools::install_github("AntiportaD/hrcomprisk") ``` ## Using a formatted data set to apply the `hrcomprsk` package You can use the dataset provided by the authors from the [CKiD study](https://statepi.jhsph.edu/ckid/), wich has the necessary variables to run the package. ```{r example} library(hrcomprisk) data <- hrcomprisk::dat_ckid dim(data) #dimensions names(data) #varible names ``` The package will create a `data.frame` object with the cumulative incidence of each competing risk for each exposure group. We can use the `CRCumInc` fuction. ```{r CRCumInc_example} mydat.CIF<-CRCumInc(df=data, time=exit, event=event, exposed=b1nb0, print.attr=T) ``` ## Using a the output to create Plots of CIFs and the Ratio of Hazard Ratios (Rk) We can also obtain two different plots using the `plotCIF` function: 1. The Cumulative Incidence of the both events of interest overall and by exposure level, and 2. The ratios of Hazard rations (sub-distribution Hazard Ratio and cause-specific Hazard Ratio) by event. ```{r plotCIF} plots<-plotCIF(cifobj=mydat.CIF, maxtime = 20, eoi = 1) ``` ## Bootstrapping the data to get 95% Confidence Intervals for the Ratio of Hazard Ratios (Rk) In order to get confidence intervals to the ratio of Hazard Ratios (Rk), we can use the `bootCRCumInc` function: ```{r boot_example} ciCIF<-bootCRCumInc(df=data, exit=exit, event=event, exposure=b1nb0, rep=100, print.attr=T) ``` Finally, we can use this new data to add the 95% Confidence Intervals to the previous plot using again the `plotCIF` function. ```{r plot_ci} plotCIF(cifobj=mydat.CIF, maxtime= 20, ci=ciCIF) ``` ## The wrapper function `npcrest` The package also offers a wrapper function (`npcrest`) to do all this analyses in one step. ```{r npcrest} npcrest(df=data, exit=exit, event=event, exposure=b1nb0,rep=100, maxtime=20, print.attr=T) ``` ## References 1. Ng D, Antiporta DA, Matheson M, Munoz A. Nonparametric assessment of differences between competing risks hazard ratios: application to racial differences in pediatric chronic kidney disease progression. Clinical Epidemiology, 2020 (in press) 2. Muñoz A, Abraham AG, Matheson M, Wada N. In: Risk Assessment and Evaluation of Predictions. Lee MLT, Gail M, Pfeiffer R, Satten G, Cai T, Gandy A, editor. New York: Springer; 2013. Non-proportionality of hazards in the competing risks framework; pp. 3–22. [Google Scholar](https://link.springer.com/chapter/10.1007/978-1-4614-8981-8_1)